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The propagation of internal AlfvBn-acoustic-gravity waves in a compressible, 
stratified, inviscid, perfectly conducting, isothermal atmosphere in the presence 
of a horizontal magnetic field is investigated by considering both the horizontal 
and the vertical component of the group velocity. The vertical component of the 
group velocity is important because it determines the speed at which energy 
travels upwards and becomes available for heating the upper regions. The regions 
of propagation and no propagation of waves are delineated for different magnetic 
Mach numbers, in a refractive-index domain. The horizontal and vertical group 
velocities are compared with the corresponding phase velocity of thewave motion. 
It is found that the horizontal group velocity of the internal waves is always less 
than the horizontal phase velocity for small magnetic fields and vice versa for 
large magnetic fields, whereas the vertical group velocity is always opposite in 
direction to the vertical phase velocity for small magnetic fields and vice versa 
for large magnetic fields. We have also drawn the reflexion condition in a wave- 
number-frequency domain for different Mach numbers. 

1. Introduction 
Dessler & Parker (1959) have shown that geomagnetic storms result from 

fluctuations in the intensity of particles streaming from the sun, and that the 
disturbances are propagated through the ionosphere as hydromagnetic waves. 
Also, the extremely high temperature of the solar corona is generally believed to 
be due to the transfer of energy from the convection zone by waves. The major 
cont,ribution to the heating of the solar corona comes from the internal AlfvBn- 
acoustic-gravity waves. A full understanding of their role will depend in part on 
an understanding of the propagation conditions met at all levels in the region of 
propagation, in particular the part played by reflexion and ducting. 

Recently Yu (1  965) has discussed the propagation of internal AlfvBn-acoustic- 
gravity waves in terms of three independent wave modes, namely the Alfvh 
mode, gravity mode and acoustic mode. However, in a magnetized plasma, it is in 
principle not correct to consider any one of these modes independently of the 
others. The modes all interact with each other and must be considered simul- 
taneously. This has been discussed by McLellan & Winterberg (1968) in relation 
to heating of the solar corona but little attention has been paid to  the physical 
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mechanism of the propagation of such waves. Therefore the aim of the present 
analysis is to discuss in more detail the propagation, absorption and reflexion of 
these waves. For some observational purposes, the horizontal and vertical group 
velocities will be of greater consequence than the phase velocities. The vertical 
component of the group velocity is particularly important because it determines 
the speed at which energy travels upwards in the atmosphere and becomes 
available for heating the upper regions. Thus in this paper we have also made a 
detailed comparison of the group and phase velocities. 

Recently Rudraiah, Venkatachalappa & Kandaswamy (1 976) studied the 
propagation of internal AlfvBn-acoustic-gravity waves in a non-uniform flow 
with particular attention to the transfer of energy and momentum from one region 
to another. However, for a complete understanding of these waves in the region 
of propagation and, in particular, the part played by reflexion and ducting, we 
must discuss the physical properties of these waves in more detail. This is done 
in this paper by considering, for mathematical simplicity, uniform basic flow. 
Specifically, we study the propagation of AlfvBn-acoustic-gravity waves in a 
compressible, stratified, inviscid, perfectly conducting, isothermal atmosphere 
in the presence of a horizontal magnetic field. We consider a basic magnetic field 
whose magnitude varies with height in such a manner as to render the Alfv6n 
velocity constant for the entire atmosphere. It may be remarked that in an actual 
atmosphere the density, pressure and magnetic field do change with height 
though not necessarily in the manner implied above. The assumptions of constant 
Alfv6n velocity and constant temperature for the atmosphere are made for 
mathematical simplicity so as to evolve the simplest model of a hydromagnetic 
atmosphere, and it is hoped that the physics of the problem are not materially 
changed. 

2. Mathematical formulation 
We consider a system of Cartesian axes with the x axis in the vertical direction. 

We consider a fluid which is isothermal, compressible, inviscid and perfectly 
conducting with vertical density stratification. Under these assumptions the 
basic hydromagnetic equations governing the motion of the fluid are 

where 

i?H/at = V x (q x H), (2.4) 

V.H = 0, 

D/Dt = a/at + (q. V), 

q denotes the Eulerian velocity vector, p1 the local fluid density, t time, ,U the 
magnetic permeability, H the magnetic field, 9 the acceleration due to gravity 
and p1 the hydrodynamic pressure. 
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2.1. Equilibrium configuration 

The compressible ideal fluid is assumed to be at rest and the mass density po(z) 
and the magnetic field Ho(z), in the x direction, are assumed to be of the form 

POW = pcexp ( - P z ) ,  HO(4 = K e x p  ( -  m, (2.7), (2.8) 

where p is the reciprocal of the scale height and is written as 

p = g(c”7 + &42)-1 = g@( 1 + $yM2))-1, 

where A denotes the Alfvhn speed (,uuHi/po)3, M = A / c  is the magnetic Mach 
number and y is the usual ratio of specific heats. For magnetostatic balance we 
have 

dpo/dz = - (gpo +pH0 dHiJdz), (2.9) 

where po  denotes the steady-state hydrodynamic pressure. 

2.2. The perturbed state 
Upon the equilibrium configuration discussed above we superimpose a small 
disturbance of the form (u, v, w), po +p,po + p ,  (Ho + hx, h,, hs). Then the linearized 
forms of (2.1)-(2.6) admit plane-wave solutions in which any perturbation quant- 
ity, say f, may be written as 

f = Re [f( z )  exp {i( kx + Zy - crt )}I. (2.10) 

Elimination of all variables but 2u leads to the wave equation 

d2t2 dt2 
dz2 dz 
- -p -+aw = 0, (2.11) 

where 
e =  (N2  + !2% - a2) P + (a2-- !25) (g2k2-  N2a2) 

(2.12) 
(a2 - !&) (Q - g4) 

9 

0 1 ~  = k2 + P, 
Qc = 01c = sonic frequency, !JA = kA = Alfvhn frequency, 

N 2  = 9/39 

P = ((72- ! 2 1 ) 2  !2: + (12/k2) (T4Q5, 

Q = (a2 - Q5) (a2- Q,?) - (Z2/k2) a2Q5. 
Equation (2.1) can be converted into the canonical form 

d2@/dz2 + q2$ = 0 

6 = $exp ( jz ipaz), 
by the change of variable 

0 
where 

q2 = $c-$p2.  

(2.13) 

(2.14) 

(2.15) 
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The exponential factor in (2.14) gives rise to the well-known growth of ampli- 
tude with height. The q in (2.13) and (2.15) is the vertical wavenumber, which is 
a constant, na, say, in this isothermal atmosphere with constant Alfvth fre- 
quency R,. 

3. Propagation and reflexion of waves 
In  this section, using the packet velocity and phase velocity, we discuss in 

detail the condition for reflexion of waves and the region for evanescence. From 
(2.15), we find that real values of u, k and I are accompanied by real values of 42. 

An oversimplified but common approach is to view the waves as vertically 
propagating if q2 > 0 and vertically evanescent if q2 < 0 and to view any level at  
which q 2  = 0 as a reflexion level. In the following analysis, for simplicity we 
assume 1 = 0 (i.e. the axial orientation is chosen such that a/ay vanishes). 

3.1. General characteristics of internal waves 

The dispersion relation (2.15) in the case I = 0 takes the form 

where 

Here wS is t.he 13runt-17aisala frequency for the compressible conducting fluid in 
t,he presence of a magnetic field. Using the dimensionless quantities 

Q = qc2/g,  k ,  = kc2/g, !2, = lu2/(kg), 

t'he dispersion equation (3.1) reduces to 

We confine our attention to real positive values of IT and k, i.e. the waves under 
consideration will be pure oscillatory in time and in the (horizontal) x direction. 
Then Q2 is purely real and it follows that Q and m are either real (internal Alfven 
waves) or purely imaginary (surface waves). In  terms of the refractive-index 
components 

and 

(3.2) may be written as 

n, = k c / u  = (ko/Qo)* 

n, = mc/u = Q/(ko  Qo)h, 

(3.3) 

(3.4) 

(3.5) 
1 + (w; /u2)  nz -n2--  4 nf = 

1 + M 2 - M 2 n ;  IP 
where 

W ,  = gy/{ac( 1 + i y M 2 ) } .  

Solutions of the modified dispersion equation (3.5) are plotted in figures 1 (a ) ,  (b)  
and ( c )  for the three cases M = 0.5, 1 and 2 respectively. In  these figures ni is 
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FIGURES 1 (a,  6 ) .  For caption see next page. 
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FIGURE 1. AlfvBn-acoustic-gravity waves of constant period in the squared-refractive- 
indax plane. Positive va.lues of correspond to  internal waves and negative values to 
surface waves. a, region of no  propagation. y = 1.4. (a) M = 0.5. (b )  M = 1.0. (c) M = 2.0. 

plotted as a function of n'$ for waves of various constant periods, identified by the 
corresponding values of v. In the hydrodynamic case (Pitteway & Hines 1965) 
these curves are straight lines, whereas in the present case they are hyperbolas, 
of which one branch passes through a common point (n;, nf) given by 

Internal Alfv6n-acoustic-gravity waves, with real n,, correspond to the legion 
above the nf axis (nz > 0)) while surface waves correspond to negative values of 
nf. There are no waves in the shaded region. From figures 1 (a)-(c), we find that 
the region of no propagation (i.e. shaded region) changes as the magnetic field 
increases. In  other words, from figures 1 (a)  and (b )  we find that the region of 
propagation in the case M = 0-5 becomes almost the region of non-propagation 
in the case M = 1. As the magnetic field increases, the Brunt-Vaisala frequency 
changes from positive to negative, i.e. there are no internal gravity waves for 
large magnetic fields. A t  this stage, it is of interest to compare the hydrodynamic 
and hydromagnetic waves. In  hydrodynamics, there do not exist internal waves 
(Pitteway & Hines 1965) with real n, (i.e. nf > 0) between the cut-off frequencies 
wa and w,, whereas, in hydromagnetics, for small magnetic fields there do exist 
(figure 1 a) waves with real n, between the frequencies oQ and w,. 
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3.2. Phase velocity and group speed 

The propagation of a wave form at the packet velocity or group speed will be of 
greater consequence than the phase motion. In  particular, the vertical com- 
ponent of the group velocity is more important because it determines the speed 
at which energy travels upwards and becomes available for heating the upper 
regions. The packet or group velocity is generally given by 

(aa/dk, aa/al, clam). 

Here c = e (k , l ,m)  is taken to be derived from the dispersion equation (5.6). 
In  the present case ac/lal = 0 since 1 = 0, and the horizontal and vertical com- 
ponents of the packet velocity are, /respectively, 

and 

where V,  = a / k  = c/n, is the horizontal phase velocity and = a/m = c/n, is the 
vertical phase velocity. Equations (3.7) and (3.8) give the relations between 
the horizontal and vertical components respectively of the group and phase 
velocities. From these equations we find that the horizontal component Ux of 
the group velocity is zero when 

= (1 + M 2 ) u i  
( 1 + M 2  - M2ni)2 - N2’ 

whereas the vertical component U, of the group velocity is zero when 

or 

Equation (3.9), using (3.5), yields 

n; = (1 + M 2 ) / M 2  

nE = 0. 

(3.9) 

(3.10) 

(3.11) 

i-M2nP, (I+M2-M%:)2-M2 ui - -- (3.12) 

This reduces in the limit M -+ 0 to the hydrodynamic condition of Pitteway & 
Hines (1965), namely 

nf = - ( y  - 2)2/4(y - 1).  (3.13) 

The horizontal components of the group and phase velocities are equal (i.e. 
U, = V,) when 

n: = 1 ,  l/M2, (1  + M2)/M2. (3.14) 

From (3.10) and (3.14) we observe that, along the line n: = (1  + M 2 ) / M 2  in the 
n:, nf plane, the vertical component of the group velocity will be zero and its 
horizontal component will be equal to the horizontal phase velocity. In other 
words, waves with horizontal refractive index n: = (1 + M 2 ) / M 2  transfer energy 
in the horizontal direction only, with velocity equal to the horizontal phase 
velocity of the waves. 

1+M2 l+M2 u;. 
nE = 



230 N .  Rudraiah, M .  Venkatachalappa and P. Kandaswamy 

' 8  

24 
201- ... . 

---- 
I 

... 

I6 
.. . . 

1 ' - - - -  
_. 

16 

14 

12 

10 

8 
6 

4 

2 

N N  

- 2  

-4 
- 6  

-8 

- 10 

- 17 

- I4 

- 16 

I , , , ,  , , , , # I ,  

! -3-4-5-6-7  -8-9-10-11-12-13-14-15 

FIQURES 2 (a, b ) .  For caption see next page. 
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FIGURE 2 .  Relation between horizontal phase and group velocities in the squared- 
refractive-index plane. 13, V, < 0 ;  m, U, > V,; 0, 0 < U, < V,; n, forbidden zone. 
7 = 1.4. (a) M = 0.5. (b) = 1.0. (c) 2M = 2.0. 

The vertical components of the group and phase velocities are equal (i.e. 
U, = V,) if 

This condition, using (3.5), gives 

(3.15) 

(3.16) 

The horizontal and vertical components of the group velocity of the wave be- 
come infinite when 

( 1  + N2) ut nz 
1 + M 2  - 2 M 2  nf ’ g 2  = (3.17) 

i.e., if the horizontal component of the group velocity of a wave becomes infinite, 
the vertical component will also be infinite. Condition (3.17), using (3.5), yields 

(3.18) 

Using conditions (3.10)-(3.12) and (3.14)-(3.17), in figures 2 and 3 we havedivided 
the nf, nz plane into four regions of propagation or no propagation for the three 
cases M = 0.5, 1 and 2. Figure 2 corresponds to the horizontal component of the 
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FIGURE 3. R~lation between vertical phase and group velocities in the squared-refractive- 
index plane. m, U, < 0; 8,  U, > V,; 0, 0 < 77, < V'; a, forbidden zone. y = 1.4. 
(a)  M = 0.5. (b)  M = 1.0. (c) M = 2.0. 

group and phase velocities whereas figure 3 corresponds to their vertical com- 
ponents. The four regions are (i) 0 < U,, V ,  < V,, V,, (ii) U,, V ,  < 0, so that the 
phase and group velocities are opposite in direction, (iii) U,, U, > &) V,) i.e. the 
group velocity is greater than the phase velocity, and (iv) the region in which 
there are no AlfvBn-acoustic-gravity waves, corresponding to the shaded regions 
in figure 1.  From figure 2 it is evident that the horizontal components of the group 
and phase velocities are opposite in direction (i.e. U, < 0 )  only for surface waves 
(nf < 0). This result is also true for hydrodynamic surface waves. For small 
magnetic fields we find (figure 2(a),  M = 0.5) that the region U, > V,  is confined 
to surface waves, but as the magnetic field increases (figures 2 b,  c) this region 
extends into both nf > 0 and nz < 0. However, the region 0 < U, < V,  extends 
into both half-planes for small magnetic fields but as the magnetic field increases 
is confined to the lower half-plane nf < 0. From figures 1 (a)-(c) we observe that, 
as the magnetic field increases, the region of propagation for M = 0.5 almost 
becomes the region of no propagation when M = 1.0 or 2.0. The vertical com- 
ponents of the group and phase velocities of the internal waves (nf > 0) are in 
opposite directions (V, < 0) for small magnetic fields (figure 3a) but are in the 
same direction for large magnetic fields (figures 3 b, c). It is of interest to compare 
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the horizontal and vertical velocities for small magnetic fields. Figures 2 (a) and 
3 (a) show that the horizontal group and phase velocities of internal waves are in 
the same direction, whereas the vertical group and phase velocities are in opposite 
directions. For small magnetic fields the regions V, > and 0 < V, < V ,  are con- 
fined to surface waves. As the magnetic field increases, these regions are mostly 
confined to internal waves. Also, for small magnetic fields, the group velocity is 
always positive for surface waves. For large magnetic fields the internal waves 
have positive vertical group velocity, whereas the surface waves have negative 
group velocity. 

3.3. Rejexion condition 

If the shear parameter k, varies only slowly with height, it  is possible for an 
AlfvBn-gravity wave to propagate upwards without reflexion until the vertical 
wavelength 2n/m becomes very large, reflexion occurring when Q = 0.  Then the 
dispersion relation (3.2) becomes 

(3.19) 

Equation (3.19) is the reflexion condition and its solutions are plotted in figures 
4(u)-(c) for the three cases M = 0.5, 1 and 2. The shaded areas in these figures 
mark the values of k, and Q, that yield imaginary Q in (3.2) and thus correspond 
to surface waves. The corresponding region in the non-magnetic case lies between 
the dashed curves in figures 4 (a)-(c). The two unshaded areas yield real values of 
Q, corresponding to internal Alfvkn-acoustic-gravity waves. The solutions of 
(3.19) form the boundaries of the unshaded regions. Curves of constant fre- 
quency take the form of rectangular hyperbolas on these diagrams. The hyper- 
bolas corresponding to u = w, and u = wg are given by 

where u = QA is a straight line given by Q, = M2ko. It is noted that in hydro- 
dynamics the curves corresponding to (r = w, and (r = @,, lie entirely in the 
shaded region, i.e. there exist only surface waves between these frequencies. 
However, in the present case, as is expected from $3.1, we note that these curves 
do not lie entirely in the shaded region because of the existence of Alfvkn wave 
sequences between these frequencies. For large magnetic fields there will be no 
internal waves, only Alfvkn-acoustic waves. 

In  this paper we have assumed the atmosphere to be isothermal with constant 
Alfvkn velocity. But in general an actual atmosphere will be non-isothermal and 
the Alfv6n velocity will vary with height. In  that case the parameters k, and 0, 
will vary in a specified manner with height. Because of these variations, as a 
wave propagates in the vertical direction the parameters k, and 8, will trace a 
locus in figures 4 (u)-(c). At the height at which this locus intersects the bound- 
aries of the shaded regions, the wave will be reflected. 
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FIGURE 4. Roflexion conditions for AlfvBn-acoustic-gravity waves. - - -, M = 0. (a) -, 
M = 0.5;  (b )  -, M = 1.0; (c) -, M = 2.0. 

4. Conclusions 
The characteristics of internal AlfvBn-acoustic-gravity waves have been 

studied for a stationary conducting fluid. It has been found that (figure l),  as the 
magnetic field increases, the region of propagation for M = 0.5 almost becomes 
the region of no propagation when M = 1.0. Also, in the non-magnetic case 
there are no internal waves between the cut-off frequencies wg and w,, only 
surface waves, whereas in the magnetic case it is observed that there exist both 
internal waves (n: > 0) and surface waves (nz < 0 )  between these frequencies. 
As the magnetic field increases there will not be any internal gravity waves 
since wg becomes imaginary. The relation between the horizontal and vertical 
group and phase velocities of the wave motion was studied in $3.2. We have 
found that for small magnetic fields ( M  = 0-5) the region 0 < U, < V, includes 
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both internal and surface waves and the regions U, > V,  and U, < 0 are confined 
to surface waves; whereas the regions 0 < Uz < V ,  and V, > V ,  are confined to  
surface waves and the region U, < 0 to internal waves. In  the cases M = 1 and 2 
(figures 2b,c ,  3b,c), the regions 0 < U, < Y' and U, < 0 correspond to surface 
waves and the region U, > V, is mainly confined t,o internal waves, whereas the 
regions U, > V,  and 0 < Uz < V ,  are mainly confined to internal waves (n; > 0) 
and the region U, < 0 corresponds to surface waves. In  other words, internal 
waves have positive vertical group velocity. Also, from figures 2 (a)-(c) we 
observe that the horizontal group velocity of internal waves is always less than 
their phase velocity for small magnetic fields but is greater than their phase 
velocity for large magnetic fields. In  $3.3 we have discussed the reflexion of 
Alfven-acoustic-gravity waves. It has been observed, from figures 4 (u)-(c), 
that for small magnetic fields the region of reflexion is almost the same as in the 
hydrodynamic case of Pitteway & Hines (1965). As the magnetic field increases, 
for a given wavenumber, the higher frequency waves propagate without reflexion. 

The results of this analysis are of interest in connexion with the geophysical 
problem of the propagation of energy from the lower atmosphere to the upper 
atmosphere. More specifically, the analysis of the vertical component of the 
group velocity is useful in determining the speed at which energy travels upwards 
in the atmosphere and becomes available for heating the upper regions. 

Finally, we conclude that the results of this paper are also applicable to an 
atmosphere moving with a uniform speed, because the case of a uniform flow is 
not different from that of gas at rest. It is only a quest.ion of making calcula.tions 
relative to the moving gas, which reduces the problem to the case of gas at rest. 
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